
NPN/PNP Dual Silicon Transistors

- Available in JAN, JANTX and JANTXV per MIL-PRF-19500/421
- Unitized, Dual Transistors
- Electrically Isolated, Complimentary NPN and PNP
- TO-78 and U package types

Rev. V1

Electrical Characteristics (T_A = +25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Collector - Emitter Breakdown Voltage	I _c = 10 mA dc	$V_{(BR)CEO}$	V dc	40	_
Collector - Base Cutoff Current	V_{CB} = 60 V dc V _{CB} = 50 V dc	I _{CBO1} I _{CBO2}	µA dc nA dc	_	10 10
Emitter - Base Cutoff Current	V_{EB} = 5.0 V dc V _{EB} = 3.0 V dc	I _{EBO1} I _{EBO2}	µA dc nA dc	_	10 10
					Г.
Forward Current Transfer Ratio	$V_{CE} = 1.0 \text{ V dc}; I_{C} = 150 \text{ mA dc}$ $V_{CE} = 10 \text{ V dc}; I_{C} = 100 \text{ µA dc}$ $V_{CE} = 10 \text{ V dc}; I_{C} = 1.0 \text{ mA dc}$ $V_{CE} = 10 \text{ V dc}; I_{C} = 10 \text{ mA dc}$ $V_{CE} = 10 \text{ V dc}; I_{C} = 150 \text{ mA dc}$ $V_{CE} = 10 \text{ V dc}; I_{C} = 300 \text{ mA dc}$	h _{FE1} h _{FE2} h _{FE3} h _{FE4} h _{FE5} h _{FE6}	h _{FE}	50 35 50 75 100 35	300
Collector - Emitter Saturation Voltage	I_{B} = 15 mA dc; I_{C} = 150 mA dc	V _{CE(SAT)}	Vdc	_	0.40
Base - Emitter Saturation Voltage	I_B = 15 mA dc; I_C = 150 mA dc	V _{BE(SAT)}	Vdc	0.8	1.25
		V BE(SAT)	Vuc	0.0	1.2

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN/PNP Dual Silicon Transistors

Rev. V1

Electrical Characteristics ($T_A = +25^{\circ}C$ unless otherwise specified)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Small-Signal Short-Circuit Forward Current Transfer Ratio	V _{CE} = 10 V dc; I _C = 1 mA dc; f = 1 kHz	h _{fe}	_	60	300
Small-Signal Common Emitter Input Impedance	V _{CE} = 10 V dc; I _C = 1 mA dc; f = 1 kHz	h _{ie}	kΩ	1.5	9
Small-Signal Common Emitter Output Admittance	V _{CE} = 10 V dc; I _C = 1 mA dc; f = 1 kHz	h _{oe}	µhmo	_	50
Collector-Base Cutoff Current	$T_{A} = +150^{\circ}C$ $V_{CB} = 50 \text{ V dc}$	I _{CBO3}	µA dc	_	10
Forward Current Transfer Ratio	$T_{A} = -55^{\circ}C$ $V_{CE} = 10 \text{ V dc; } I_{C} = 10 \text{ mA dc}$	h _{FE7}	_	12	_
Magnitude of Small-Signal Short-Circuit Forward Current Transfer Ratio	V _{CE} = 10 V dc; I _C = 20 mA dc; f = 100 MHz	h _{fe}	_	2.0	10
Open Circuit Output Capacitance	V _{CB} = 10 V dc; I _E = 0; 100 kHz ≤ f ≤ 1 MHz	C _{obo}	pF		8.0
Noise Figure	V_{CE} = 10 V dc; I_{C} = 100 μA dc; f = 1kHz; R_{G} = 1 $k\Omega$	NF	_	8	dB
Collector Emitter Nonlatching Voltage	See figure 10	V _{CE}	V dc	40	_
Switching Characteristics					
Turn-On Time (saturated)	See figure 7	t _{on}	ns	_	45
Turn-Off Time (saturated)	See figure 8	t _{off}	ns	_	300
Pulse Response	See figure 9	t _{on} + t _{off}	ns		18

²

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN/PNP Dual Silicon Transistors

Rev. V1

Absolute Maximum Ratings ($T_A = +25^{\circ}C$ unless otherwise specified)

Ratings	Symbol	Value
Collector - Emitter Voltage	V _{CEO}	40 V dc
Collector - Base Voltage	V _{CBO}	60 V dc
Emitter - Base Voltage	V _{EBO}	5.0 V dc
Collector Current	Ι _C	600 mA dc
Total Power Dissipation @ T _A = +25°C One Transistor Total Device	PT	0.30 W ⁽⁴⁾ 0.60 W ⁽⁴⁾
Total Power Dissipation @ T _C = +25°C One Transistor Total Device	P _T (1)	1.0 W ⁽⁵⁾ 2.0 W ⁽⁵⁾
Operating & Storage Temperature Range	T_{J},T_{STG}	-65°C to +200°C
V _{1C—2C}	V dc	<u>+</u> 120
Lead To Case Voltage	V dc	<u>+</u> 120

Thermal Characteristics

Types	R₀ _{JA}	R₀ _{JA}	R _{∗JSP}	R _{∘JSP}
	One Transistor	Total Device	One Section	Both Sections
2N4854	<u>°C/W</u>	<u>°C/W</u>	<u>°C/W</u>	<u>°C/W</u>
2N4854U	350	290	110 ⁽⁶⁾	90 ⁽⁶⁾

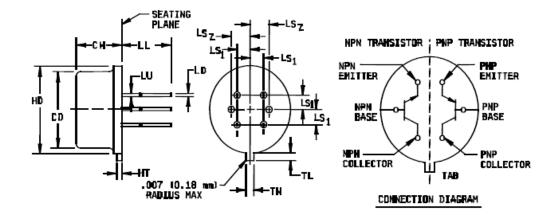
(1) T_C rating does not apply to surface mount devices (2N4854U).

(2) For $T_A > +25^{\circ}C$, derate linearly 1.43 mW/°C one transistor, 2.00 mW/°C both transistors. (3) For $T_C > +25^{\circ}C$, derate linearly 4.0 mW/°C one transistor, 8.0 mW/°C both transistors.

(4) For $T_A > +25^{\circ}$ C, derate linearly 1.71 mW/°C one transistor, 3.43 mW/°C both transistors

(5) For $T_c > +25^{\circ}$ C, derate linearly 5.71 mW/°C one transistor, 11.43 mW/°C both transistors.

(6) For U package the thermal resistance is R_{eSP} .


VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.vptcomponents.com for additional data sheets and product information.

NPN/PNP Dual Silicon Transistors

Rev. V1

Outline Drawing (TO-78)

	Dimensions				
Ltr	Inches		Millimeters		Notes
	Min	Max	Min	Max	
CD	.305	.335	7.75	8.51	
CH	.140	.260	3.56	6.60	
HD	.335	.370	8.51	9.40	
HT	.009	.125	0.23	3.18	
LD	.016	.021	0.41	0.53	3, 7
LL	.500	1.750	12.70	44.45	7

Dimensions					
Ltr	Inches Millimeters		Notes		
	Min	Max	Min	Max	
LS1	.0707 Nom. 1.796 Nom.		5		
LS2	.1000	Nom.	2.540 Nom.		5
LU	.016	.019	0.41	0.48	4, 7
TL	.029	.045	0.74	1.14	6
TW	.028	.034	0.71	0.86	

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Measured in the zone beyond .250 inch (6.35 mm) from the seating plane.
- 4. Measured in the zone .050 inch (1.27 mm) and .250 inch (6.35 mm) from the seating plane.
- 5. When measured in a gauging plane .054 +.001, -.000 inch (1.37 +0.03, -0.00 mm) below the seating plane of the transistor, maximum diameter leads shall be within .007 inch (0.18 mm) of their true location relative to a maximum width tab. Smaller diameter leads shall fall within the outline of the maximum diameter lead tolerance.
- 6. Measured from the maximum diameter of the actual device.
- 7. All six leads.
- 8. In accordance with ASME Y14.5M, diameters are equivalent to \$\phix\$ symbology.

FIGURE 2. Physical dimensions of transistor type 2N4854 (all guality levels, similar to TO-78).

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.vptcomponents.com for additional data sheets and product information.

NPN/PNP Dual Silicon Transistors

Outline Drawing (U)

Ltr	Dimensions			
	Inches		Millin	neters
	Min	Max	Min	Max
Α	.058	.100	1.47	2.54
A1	.026	.039	0.66	0.99
B ₁	.022	.028	0.56	0.71
B ₂	.072	Ref.	1.83	Ref.
B ₃	.006	.022	0.15	0.56
D	.165	.175	4.19	4.45
D1	.095	.105	2.41	2.67

Ltr	Dimensions				
	Inc	Inches		neters	
	Min	Max	Min	Max	
D ₂	.045	.055	1.14	1.40	
Dз		.175		4.45	
E	.240	.250	6.10	6.35	
E1		.250		6.35	
L ₁	.060	.070	1.52	1.78	
L ₂	.082	.098	2.08	2.49	
L3	.003	.007	0.08	0.18	

NOTES:

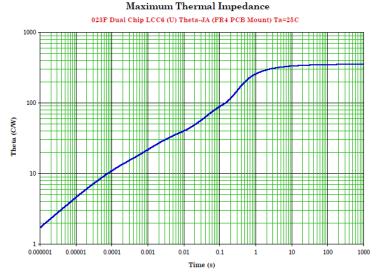
Dimensions are in inches.

2. Millimeters are given for general information only.

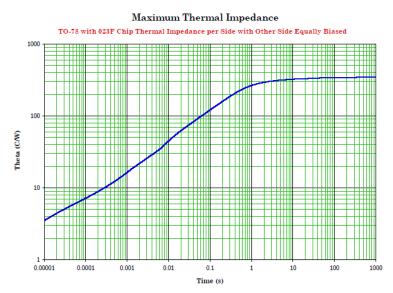
 The coplanarity deviation of all terminal contact points, as defined by the device seating plane, shall not exceed .006 inch (0.15 mm) for solder dipped leadless chip carriers.

FIGURE 3. Physical dimensions of transistor type 2N4854U.

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.


Rev. V1

NPN/PNP Dual Silicon Transistors


Rev. V1

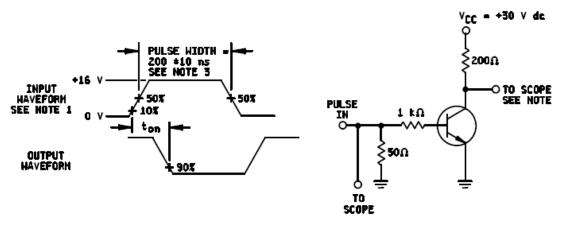
Graphs

Thermal resistance = 350° C/W one side, 290° C/W both sides operating in "parallel". Ta = 25° C (PCB FR4 Mounted).

FIGURE 5. Thermal impedance graph (ReJPCB) for 2N4854U (U).

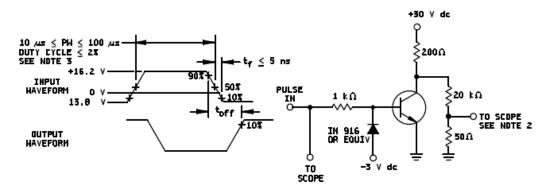
Thermal impedance TO-78 package dual 023F chips, Thermal resistance = 350° C/W one side, 290°C/W both sides operating in "parallel". T_A = 25° C (air cooled).

FIGURE 6. Thermal impedance graph (ReJA) for 2N4854 (all quality levels, similar to TO-78).


VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN/PNP Dual Silicon Transistors

Rev. V1


Test Circuits

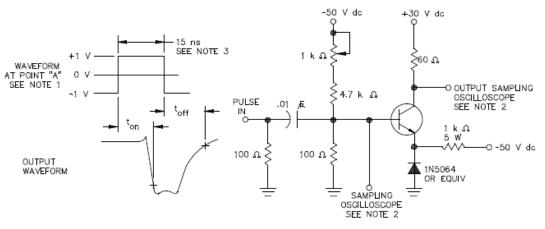
NOTES:

- The rise time (t₂) of the applied pulse shall be ≤ 2.0 ns, duty cycle ≤ 2 percent, and the generator source impedance shall be 50 Ω.
- Sampling oscilloscope: Z_{IN} ≥ 100 kΩ, C_{IN} ≤ 12 pF, rise time ≤ 0.2 ns.
- The signs, polarity symbols, and waveforms shown are for the NPN transistor; the signs and polarity symbols are reversed for the PNP triode (see 1.2 herein).

FIGURE 7. Saturated turn-on switching time test circuit.

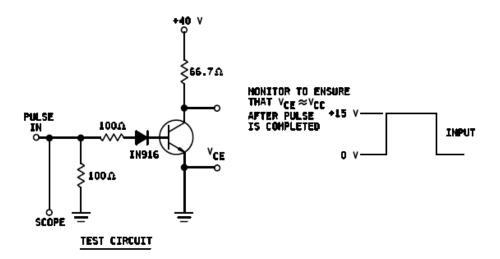
NOTES:

- The rise time (t_r) of the applied pulse shall be ≤ 2.0 ns, duty cycle ≤ 2 percent, and the generator source impedance shall be 50 Ω.
- 2. Sampling oscilloscope: $Z_{IN} \ge 100 \text{ k}\Omega$, $C_{IN} \le 12 \text{ pF}$, rise time $\le 0.2 \text{ ns}$.
- The signs, polarity symbols, and waveforms shown are for the NPN transistor; the signs and polarity symbols are reversed for the PNP triode (see 1.2 herein).


VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN/PNP Dual Silicon Transistors

Rev. V1


Test Circuits

NOTES:

- The rise time (t_r) of the applied pulse shall be ≤ 2.0 ns, duty cycle ≤ 2 percent, and the generator source impedance shall be 50 Ω.
- 2. Sampling oscilloscope: $Z_{IN} \ge 100 \text{ k}\Omega$, $C_{IN} \le 12 \text{ pF}$, rise time $\le 0.2 \text{ ns}$.
- The signs, polarity symbols, and waveforms shown are for the NPN transistor; the signs and polarity symbols are reversed for the PNP triode (see 1.2 herein).

FIGURE 9. Nonsaturated switching time test circuit.

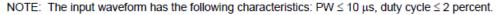


FIGURE 10. Collector emitter nonlatching voltage test circuit.

8

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN/PNP Dual Silicon Transistors

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PA-TENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.

⁹

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.