
Rev. V1

NPN Dual Silicon Transistors

Features

- Available in JAN, JANTX, JANTXV, JANS and JANSR per MIL-PRF-19500/355
- TO-78 and U package types
- Radiation Tolerant Levels M, D, P, L, and R

Electrical Characteristics (T_A = +25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Collector - Base Cutoff Current	V_{CB} = 70 V dc	I _{CBO1}	µA dc	—	10
Emitter - Base Cutoff Current	V _{EB} = 6 V dc	I _{EBO1}	µA dc		10
Breakdown Voltage, Collector-Emitter	$I_{\rm C}$ = 10 mA dc	$I_{\rm C}$ = 10 mA dc $V_{\rm (BR)CEO}$		60	_
Collector - Base Cutoff Current	V_{CB} = 45 V dc	$V_{CB} = 45 \text{ V dc}$ I_{CBO2} n			2
Collector - Emitter Cutoff Current	$V_{CE} = 5 V dc$ I_{CEO1}		nA dc		2
Emitter - Base Cutoff Current	V _{EB} = 5 V dc	$V_{EB} = 5 V dc$ I_{EBO2} r			2
Forward - Current Transfer Ratio 2N2919, 2N2919L, 2N2919U 2N2920, 2N2920L, 2N2920U	V_{CE} = 5 V dc; I _C = 10 µA dc h_{FE1}			60 175	240 600
Forward - Current Transfer Ratio 2N2919, 2N2919L, 2N2919U 2N2920, 2N2920L, 2N2920U	V_{CE} = 5 V dc; I _C = 100 µA dc	h _{FE2}		100 235	325 800
Forward - Current Transfer Ratio 2N2919, 2N2919L, 2N2919U 2N2920, 2N2920L, 2N2920U	V_{CE} = 5 V dc; I _C = 1 mA dc	h _{FE3}		150 300	600 1000
Base - Emitter Saturation Voltage	I_{C} = 1.0 mA dc; I_{B} = 100 μ A dc	00 µA dc V _{BE(sat)1} V		0.5	1.0
Collector - Emitter Saturation Voltage	I_{C} = 1.0 mA dc; I_{B} = 100 µA dc	$_{\rm C}$ = 1.0 mA dc; I _B = 100 µA dc $V_{\rm CE(sat)1}$ V c		_	0.3
Forward-Current Transfer Ratio (Gain Ratio)	V_{CE} = 5 V dc; I _C = 100 µA dc	h _{FE2-1} h _{FE2-2}		0.9	1.1
Absolute Value of Base Emitter-Voltage Differential	V_{CE} = 5 V dc; I _C = 10 µA dc	V _{BE1} -V _{BE2} 1	mV dc	_	5

¹

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN Dual Silicon Transistors

Rev. V1

Electrical Characteristics ($T_A = +25^{\circ}C$ unless otherwise specified)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Absolute Value of Base Emitter-Voltage Differential	V_{CE} = 5 V dc; I _C = 100 µA dc	V _{BE1-} V _{BE2} 2	mV dc	_	3
Absolute Value of Base Emitter-Voltage Differential	V_{CE} = 5 V dc; I _C = 1 mA dc	V _{BE1-} V _{BE2} 3	mV dc	_	5
Base-Emitter-Voltage (Nonsaturated) (Absolute Value of Differential Change with Temperature)	$T_A = +150^{\circ}C$ $V_{CE} = 500 \text{ V dc}; \text{ Ic} = 100 \ \mu\text{A dc}$ $T_A = +125^{\circ}C \text{ and } +25^{\circ}C$	$ \Delta V_{BE1} - V_{BE2} \Delta T_A 2$	mV dc	_	1
Collector - Base Cutoff Current	T _A = +150°C V _{CB} = 45 V dc	I _{CBO3}	µA dc	_	2.5
Forward Current Transfer Ratio 2N2919, 2N2919L, 2N2919U 2N2920, 2N2920L, 2N2920U	$T_A = -55^{\circ}C$ $V_{CE} = 5 V dc; I_C = 10 \mu A dc$	h _{FE4}		20 50	
Base-Emitter-Voltage (Nonsaturated) (Absolute Value of Differential Change with Temperature)	$T_A = -55^{\circ}C$ $V_{CE} = 5 V dc; lc = 100 \mu A dc$ $T_A = +25^{\circ}C and -55^{\circ}C$	ΔV _{BE1-} V _{BE2} ΔT _A 1	mV dc	—	0.8
Small-Signal Short-Circuit Input Impedance	V_{CE} = 5 V dc; I _C = 1 mA dc; f = 1 kHz	h _{ie}	kΩ	3	30
Small-Signal Open-Circuit Reverse Voltage Transfer Ratio	V_{CE} = 5 V dc; I _C = 1 mA dc; f = 1 kHz	h _{re}			1 x 10 ⁻³
Small-Signal Open-Circuit Output Admittance	V_{CE} = 5 V dc; I _C = 1 mA dc; f = 1 kHz	h _{oe}	µmhos	_	60
Small-Signal Short-Circuit Forward Current Transfer Ratio (magnitude h _{fe})	V _{CE} = 5 V dc; I _C = 0.5 mA dc; f = 20 MHz	h _{FE}		3	20
Open Circuit Output Capacitance	V _{CB} = 5 V dc; I _E = 0 mA; 100 kHz ≤ f ≤ 1 MHz	C _{obo}	pF		5
Noise Figure	V_{CE} = 5 V dc; I _C = 10 µA dc; R _g = 10kΩ				
Test 1 Test 2 Test 3	f = 100 Hz f = 1 kHz f = 10 kHz	F1 F2 F3	dB dB dB	_	5 3 3
Collector - Emitter Cutoff Current	V _{CE} = 40 V dc	I _{CES}	nA dc	_	20

²

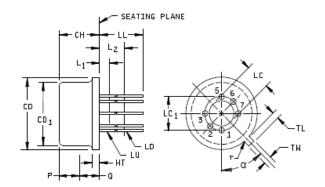
VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

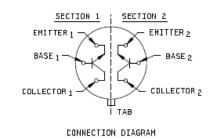
NPN Dual Silicon Transistors

Rev. V1

Absolute Maximum Ratings ($T_A = +25^{\circ}C$ unless otherwise specified)

Ratings	Symbol	Value
Collector - Emitter Voltage	V _{CEO}	60 V dc
Collector - Base Voltage	V _{CBO}	70 V dc
Emitter - Base Voltage	V _{EBO}	6.0 V dc
Collector Current	Ιc	30 mA dc
Total Power Dissipation @ T _A = +25°C One Section Both Sections	P _T (1)	200 mW 350 mW
Total Power Dissipation @ T _c = +25°C One Section Both Sections	P _T (2)	300 mW 450 mW
Thermal Resistance Junction to Ambient One Section Both Sections	$R_{e_{JA}}$	875°C/W 500°C/W
Thermal Resistance Junction to Case One Section Both Sections	R _{€JC}	583°C/W 388°C/W
Operating & Storage Temperature Range	T_{J}, T_{STG}	-65°C to +175°C


(1) For T_A > +25°C, derate linearly 1.143 mW/°C, one section, 2.000 mW/°C, both sections (2) For T_C > +25°C, derate linearly 1.714 mW/°C, one section, 2.571 mW/°C, both sections



NPN Dual Silicon Transistors

Rev. V1

Outline Drawing (TO-78)

	Dimensions					
	Incl	Inches		Millimeters		
Symbol	Min	Мах	Min	Мах		
CD	.335	.370	8.51	9.40		
CD1	.305	.335	7.75	8.51		
CH	.140	.260	3.56	6.60		
HT	.009	.041	0.23	1.04		
LC	.140	.160	3.56	4.06		
LC1	.200) TP	5.08 TP		9	
LD	.016	.021	.041	0.53	10	
LL	See notes 10, 11, and 12					
LU	.016	.019	0.41	0.48	10	
L1		.050		1.27	10	
L2	.250		6.35		10	
Р	.100		2.54		8	
Q		.050		1.27	7	
TL	.029	.045	0.74	1.14	5,6	
TW	.028	.034	0.71	0.86	4, 5	
r		.010		0.25		
α	45°	TP	45	°ТР	9	

NOTES:

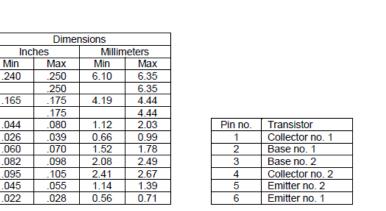

- Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Tab shown omitted.
- 4. Lead numbers 4 and 8 are omitted on this variation.
- 5. Beyond r maximum, TW shall be held to a minimum length of .21 inch (5.33 mm).
- TL shall be measured from maximum CD.
- Details of outline in this zone are optional.
- CD1 shall not vary more than .010 inch (0.25 mm) in zone P. This zone is controlled for automatic handling.
- Leads at gauge plane .054 .055 inch (1.37 1.40 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at a maximum material condition (MMC) relative to the tab at MMC. The device may be measured by direct methods or by the gauge and gauging procedures described on gauge drawing GS-1.
- LU applies between L₁ and L₂. LD applies between L₂ and LL minimum. Diameter is uncontrolled in L₁ and beyond LL minimum.
- 11. For transistor types 2N2919 and 2N2920, LL is .500 inch (12.70 mm) minimum and .750 inch (19.05 mm) maximum.
- 12. For transistor type 2N2919L and 2N2920L, LL is 1.500 inches (38.10 mm) minimum and 1.750 inches (44.45 mm) maximum.
- 13. In accordance with ASME Y14.5M, diameters are equivalent to \$\phix\$ symbology.

FIGURE 1. Physical dimensions 2N2919, 2N2919L, 2N2920, and 2N2920L (TO-78).

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN Dual Silicon Transistors

Outline Drawing (U)

NOTES:

Symbol

BL

BL₂

BW

BW₂

CH

LH

LL₁ LL₂

LS₁

LS₂

LW

1. Dimensions are in inches.

2. Millimeters are given for general information only.

3. In accordance with ASME Y14.5M, diameters are equivalent to \$\phix\$ symbology.

BL-

╺━─ BL2 ─ PIN 1 IDENTIFIER

BŴ2

3

4

LL1

LИ

LS2

- LS1

0

1

вω

2

1

LL2

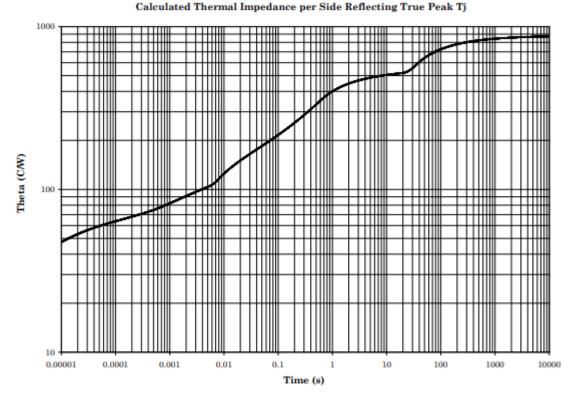
111

СН

23

FIGURE 2. Physical dimensions (2N2919U and 2N2920U) surface mount.

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.


Rev. V1

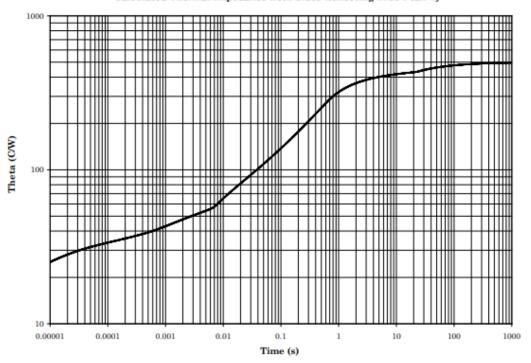
NPN Dual Silicon Transistors

Rev. V1

Thermal Impedance Curves

Maximum Thermal Impedance

FIGURE 6. For each side: Thermal impedance = 875°C/W, Pt = 200 mW.


VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN Dual Silicon Transistors

Rev. V1

Thermal Impedance Curves

Maximum Thermal Impedance Calculated Thermal Impedance Both Sides Reflecting True Peak Tj

FIGURE 7. Both sides: Thermal impedance = 500°C/W, Pt = 350 mW.

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN Dual Silicon Transistors

Rev. V1

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PA-TENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.