NPN Darlington Power Silicon Transistors

Features

- Available in JAN, JANTX, JANTXV per MIL-PRF-19500/502
- TO-3 (TO-204AA) Package
- Designed for Use in High Gain Amplifier and Switching Applications

Electrical Characteristics (T_A = +25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Collector - Emitter Breakdown Voltage	I _C = 100 mA dc, 2N6058 I _C = 100 mA dc, 2N6059	V _{(BR)CEO}	V dc	80 100	_
Collector - Emitter Cutoff Current	V _{CE} = 40 V dc, 2N6058 V _{CE} = 50 V dc, 2N6059	I _{CEO}	mA dc	_	1.0 1.0
Collector - Emitter Cutoff Current	$V_{CE} = 80 V dc; V_{BE} = 1.5 V dc, 2N6058$ $V_{CE} = 100 V dc; V_{BE} = 1.5 V dc, 2N6059$		µA dc	_	10 10
Collector - Base Cutoff Current	V _{EB} = 5 Vdc	I _{EBO}	mA dc		2.0
	1	T	т – т		T
Forward Current Transfer Ratio	$I_{C} = 1 \text{ A dc}; V_{CE} = 3 \text{ V dc}$ $I_{C} = 6 \text{ A dc}; V_{CE} = 3 \text{ V dc}$ $I_{C} = 12 \text{ A dc}; V_{CE} = 3 \text{ V dc}$	h _{FE}	-	1,000 1,000 150	18,000
Collector - Emitter Saturation Voltage	I_{C} = 12 A dc; I_{B} = 120 mA dc I_{C} = 6 A dc; I_{B} = 24 mA dc	$\begin{array}{c} V_{CE(sat)1} \\ V_{CE(sat)2} \end{array}$	Vdc	—	3.0 2.0
Base - Emitter Voltage	$I_{\rm C}$ = 12 A dc; $I_{\rm B}$ = 120 mA dc	$V_{BE(SAT)}$	Vdc		4.0
Base - Emitter Voltage	I_{C} = 6 A dc; V_{CE} = 3 Vdc	V_{BE}	Vdc	_	2.8
Collector - Emitter Cutoff Current	$T_{A} = +150^{\circ}C$ V _{CE} = 80 V dc; V _{BE} = 1.5 V dc, 2N6058 V _{CE} = 100 V dc; V _{BE} = 1.5 V dc, 2N6059	I _{CEX2}	mA dc	_	5.0 5.0
Collector - Emitter Saturation Voltage	$T_A = +150^{\circ}C$ $I_C = 6 A dc; I_B = 24 mA dc$	V _{CE(sat)3}	V dc	_	2.0
Forward - Current Transfer Ratio	$T_{A} = -55^{\circ}C$ $V_{CE} = 3 V dc; I_{C} = 6 A dc$	h _{FE4}		1,000	
Dynamic Characteristics		1			
Magnitude of Common Small-Signal Short-Circuit Forward Current Transfer Ratio	I _C = 5 A dc; V _{CE} = 3 Vdc; f = 1.0 MHz	h _{fe}	-	10	250
Small-Signal Short-Circuit Forward Current Transfer Ratio	I _C = 5 A dc; V _{CE} = 3 Vdc; f = 1 kHz	h _{fe}	-	1,000	_
Output Capacitance	V_{CB} = 10 V dc; I _E = 0; 100 kHz ≤ f ≤ 1 MHz	C _{obo}	pF		300
Switching Characteristics	·				
Turn-On Time	V_{CC} = 30 Vdc; I _C = 5 A dc; I _B = 20 mA dc	t _{on}	μs	—	2.0
Turn-Off Time	V_{CC} = 30 Vdc; I _C = 5 A dc; I _{B1} = I _{B2} = 20 mA dc	t _{off}	μs	_	10

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

For further information and support please visit. info@vptcomponents.com Rev. V3

1

NPN Darlington Power Silicon Transistors

Rev. V3

Absolute Maximum Ratings ($T_A = +25^{\circ}C$ unless otherwise noted)

Ratings	Symbol	Value
Collector - Emitter Voltage 2N6058 2N6059	V _{CEO}	80 V dc 100 V dc
Collector - Base Voltage 2N6058 2N6059	V _{CBO}	80 V dc 100 V dc
Emitter - Base Voltage	V _{EBO}	5 V dc
Collector Current	Ic	12 A dc
Base Current	I _B	0.2 A dc
Total Power Dissipation @ $T_c = +25^{\circ}C^1$ @ $T_c = +100^{\circ}C$	PT	150 W 75 W
Operating & Storage Temperature Range	T _J , T _{STG}	-55°C to +175°C

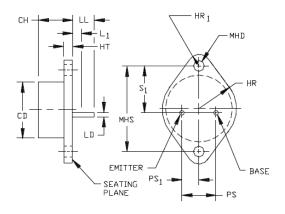
(1) Derate linearly @ 1.00 W/°C above $T_C > +25^{\circ}C$.

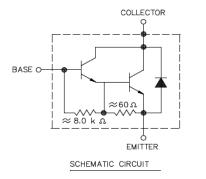
Thermal Characteristics

Characteristics	Symbol	Max. Value
Thermal Resistance, Junction to Case	$R_{ extsf{ heta}JC}$	1°C/W

Safe Operating Area	
DC Tests:	T_{C} = +25°C, +10°C, -0°C, I Cycle, t ≥ 1s; 1 cycle
Test 1: Test 2: Test 3:	$V_{CE} = 12.5 \text{ Vdc}, I_C = 12 \text{ Adc}$ $V_{CE} = 30 \text{ Vdc}, I_C = 5 \text{ Adc}$ $V_{CE} = 70 \text{ Vdc}, I_C = 200 \text{ mAdc}, 2N6058$ $V_{CE} = 90 \text{ Vdc}, I_C = 155 \text{ mAdc}, 2N6059$

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.


²


NPN Darlington Power Silicon Transistors

Rev. V3

Outline Drawing (TO-3)

Symbol	Dimensions			Notes	
	Inches		Millimeters		
	Min	Max	Min	Max	
CD		.875		22.23	
СН	.250	.328	6.35	8.33	
HR	.495	.525	12.57	13.34	
HR ₁	.131	.188	3.33	4.78	3
HT	.060	.135	1.52	3.43	
LD	.038	.043	0.97	1.09	4,5
LL	.312	.500	7.92	12.7	4
L ₁		.050		1.27	4,5
MHD	.151	.161	3.84	4.09	6
MHS	1.177	1.197	29.90	30.40	
PS	.420	.440	10.67	11.18	7, 8
PS ₁	.205	.225	5.21	5.72	7, 4, 8
S1	.655	.675	16.64	17.15	7

FIGURE 1. Physical dimensions and schematic circuit (TO-204AA, similar to TO-3).

NOTES:

- 1. Dimensions are in inches. Millimeters are given for general information only.
- 2. Body contour is optional within zone defined by dimension CD.
- 3. At both ends.
- 4. Both terminals.
- Dimension LD applies between dimension L1 and LL. Lead diameter shall not exceed twice dimension LD within dimension L1. Diameter is uncontrolled in dimension L1.
- 6. Two holes.
- 7. These dimensions shall be measured at points .050 inch (1.27 mm) to .055 inch (1.40 mm) below the seating plane. When gauge is not used, measurement shall be made at seating plane.
- The seating plane of the header shall be flat within .001 inch (0.03 mm) concave to .004 inch (0.10 mm) convex inside a .930 inch (23.62 mm) diameter circle on the center of the header and flat within .001 inch (0.03 mm) concave to .006 inch (0.15 mm) convex overall.
- 9. The collector shall be electrically connected to the case.

3

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN Darlington Power Silicon Transistors

Rev. V3

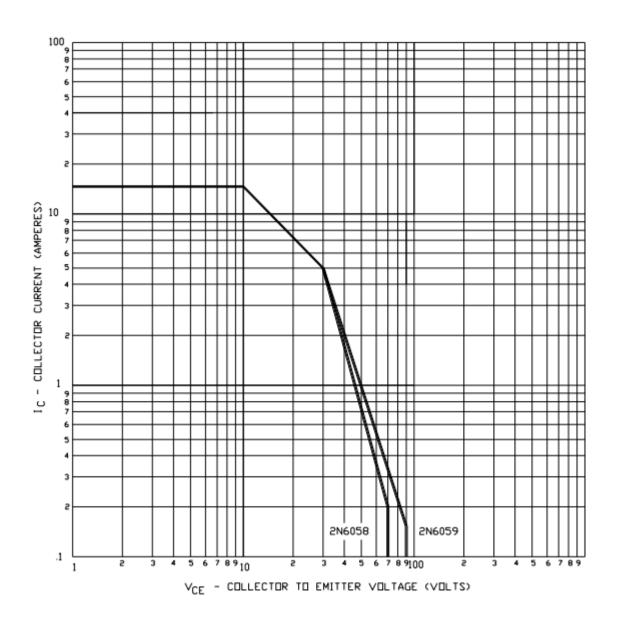


FIGURE 3. Maximum safe operating area graph (continuous dc).

4

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN Darlington Power Silicon Transistors

Rev. V3

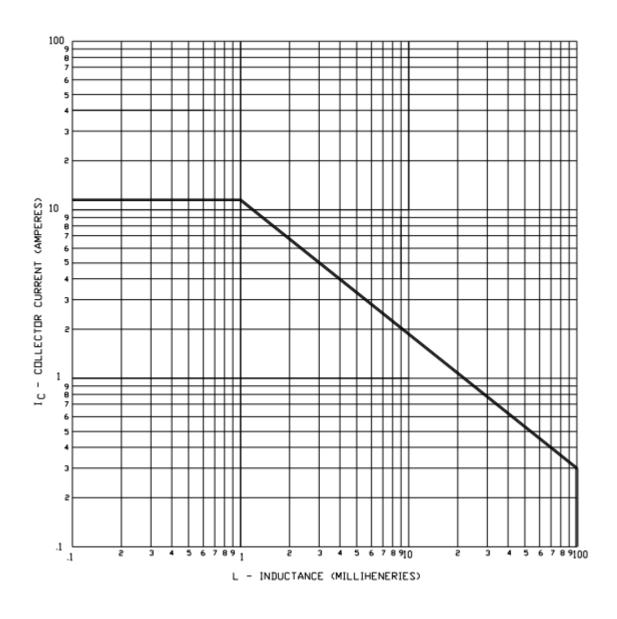


FIGURE 4. Safe operating area for switching between saturation and cutoff (unclamped inductive load).

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

5

NPN Darlington Power Silicon Transistors

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RE-LATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTA-BILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMI-TATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.

⁶

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.